A Fuzzy Controller with Various T-norms Applied in Robot Navigation
نویسندگان
چکیده
Fuzzy set theory and fuzzy logic are the convenient tools for handling uncertain, imprecise, or unmodeled data in intelligent decision-making systems. The utility of fuzzy logic in system controls domain is presented in the context of a mobile robot navigation control application. The Takagi-Sugeno controller is a fuzzy model capable of approximating a wide class of nonlinear systems by decomposing the input space into several partial fuzzy subspaces and representing the output space with a linear equation. The output control action is obtained from the rule-base and a set of crisp inputs. A Takagi-Sugeno type Fuzzy Logic Controller (FLC), to work with crisp data, intervals and fuzzy sets inputs, is proposed in connection with a mobile robot navigation model. The model also works with a set of t-norms, and for any t-norm an output value is obtained. Finally, these outputs are combined to obtain the overall output of the system. Key-Words: Fuzzy set, Fuzzy logic control, Zero order system, Mobile robot, Repulsive angle, T-norm.
منابع مشابه
A Takagi-Sugeno Type Controller for Mobile Robot Navigation
Fuzzy set theory and fuzzy logic are the convenient tools for handling uncertain, imprecise, or unmodeled data in intelligent decision-making systems. The utility of fuzzy logic in system controls domain is presented in the context of a mobile robot navigation control application. The Takagi-Sugeno controller is a fuzzy model capable of approximating a wide class of nonlinear systems by decompo...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملGenetic Programming of Full Knowledge Bases for Fuzzy Logic Controllers
Genetic programming (GP) is applied to automatic discovery of full knowledge bases for use in fuzzy logic control applications. An extension to a rule learning GP system is presented that achieves this objective. In addition, GP is employed to handle selection of fuzzy set intersection operators (t-norms). The new GP system is applied to design a mobile robot path tracking controller and perfor...
متن کاملMobile robot wall-following control using a behavior-based fuzzy controller in unknown environments
This paper addresses a behavior-based fuzzy controller (BFC) for mobile robot wall-following control.The wall-following task is usually used to explore an unknown environment.The proposed BFC consists of three sub-fuzzy controllers, including Straight-based Fuzzy Controller (SFC),Left-based Fuzzy Controller (LFC), and Right-based Fuzzy Controller (RFC).The proposed wall-...
متن کامل